MS CLASS XII CHEMISTRY 2019-20

Q.No.	Value points	Marks
	SECTION:A	
1.	Reaction taking place at cathode when the battery is in use: $\mathrm{PbO}_{2}(s)+\mathrm{SO}_{4}^{2-}(a q)+4 \mathrm{H}^{+}(a q)+2 e^{-} \rightarrow \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)$	1
2.	$2 \mathrm{~F}=2 \times 96500=193000$ coulombs	1
3.	$\text { Molarity }=\frac{38 \times 1.294 \times 1000}{98 \times 100}=5.02 \mathrm{M}$	1
4.	Mass of solution after discharge $=3500 \mathrm{~mL} \times 1.139 \mathrm{~g} \mathrm{~mL}^{-1}=3986.5 \mathrm{~g}$ Mass of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in the solution $\frac{20}{100} \times 3986.5 \mathrm{~g}=797.3 \mathrm{~g}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
5.	At anode: $\mathrm{O}_{2}(\mathrm{~g})$ At cathode: $\mathrm{H}_{2}(\mathrm{~g})$	$\begin{aligned} & \hline 1 / 2 \\ & 1 / 2 \end{aligned}$
6.	Sodium cyanide.	1
7.	Nucleotide OR Laevorotatory / Gets inverted	1
8.	Zwitterion / dipolar ion	1
9.	Condensation	1
10.	Benzaldehyde	1
11.	(c)	1
12.	(b)	1
13.	(c)	1
14.	(a)	1
15.	(a) OR (b)	
16.	(c)	1
17.	(a)	1
18.	(d)	1
19.	(d)	1
20.	(d)	1
	SECTION:B	
21.	Lone pairs : 2 Geometry: Square planar	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \hline \end{array}$
22. (i) (ii)	$\begin{aligned} & \text { Slope }=-\frac{E_{a}}{2.303 R} \\ & \mathrm{k}_{1}>\mathrm{k}_{2} \end{aligned}$	1
23.	When there is dissociation of solute into ions, in dilute solutions (ignoring interionic attractions) the number of particles increases. As the value of	1

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
colligative properties depends on the number of particles of the solute , the experimentally observed value of colligative property will be higher than the true value, therefore the experimentally determined (observed) molar mass is always lower than the true value. \\
For KCl (electrolyte) the experimentally determined molar mass is always lower than the true value when water is used as solvent. \\
Glucose (non-electrolyte) does not show a large variation from the true value.
\end{tabular} \& \\
\hline \begin{tabular}{l}
24. \\
(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{CH}_{3}-\mathrm{CH}(\mathrm{Cl})-\mathrm{COOH} \\
\& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}
\end{aligned}
\] \& \\
\hline 25. \& \begin{tabular}{l}
IUPAC Name of the entity: \\
Dichloridobis(ethane-1,2-diamine)platinum(IV) ion \\
OR \\
Geometry: Octahedral \\
Diamagnetic
\end{tabular} \& 1

1
$11 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 26. \& \begin{tabular}{l}
Vapour phase refining: It is a refining method in which the metal is converted into its volatile compound and collected elsewhere. It is then decomposed to give pure metal. \\
Example: Mond's Process for refining of Nickel / van Arkel method for refining of Zirconium \\
Equations involved:
\[
\mathrm{Ni}+4 \mathrm{CO} \xrightarrow{330-350 \mathrm{~K}} \mathrm{Ni}(\mathrm{CO})_{4}
\]
\[
\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{450-470 \mathrm{~K}} \mathrm{Ni}+4 \mathrm{CO}
\] \\
OR \\
Extraction of gold involves leaching the metal with \(\mathrm{CN}^{-}\) \\
Oxidation reaction:
\[
4 \mathrm{Au}(\mathrm{~s})+8 \mathrm{CN}-\text { (aq.) }+2 \mathrm{H}_{2} \mathrm{O}(\text { aq. })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}(\text {aq. })+4 \mathrm{OH}^{-}
\] \\
The metal is recovered by displacement method:
\[
2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]-(\mathrm{aq} .)+\mathrm{Zn}(\mathrm{~s}) \rightarrow 2 \mathrm{Au}(\mathrm{~s})+\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}(\mathrm{aq} .)
\] \\
Zinc acts as a reducing agent.
\end{tabular} \& 1
\(1 / 2\)

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \\

\hline 27. \& | The following compound will undergo $\mathrm{S}_{\mathrm{N}} 1$ faster: |
| :--- |
| Greater the stability of the carbocation, greater will be its ease of formation from the corresponding halide and faster will be the rate of reaction. The benzylic carbocation formed gets stabilised through resonance. |
| (i) ${ }^{\prime}$ |
| (ii) |
| (iii) |
| (iv) |
| (v) |
| (vi) |
| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ forms a 1^{0} carbocation, which is less stable than benzylic carbocation. | \& 1/2 \\

\hline
\end{tabular}

28.	$\begin{aligned} & \hline \mathrm{KCl} \rightarrow \mathrm{~K}^{+}+\mathrm{Cl}^{-} \\ & \mathrm{n}=2 \\ & i=1-\alpha+n \alpha \\ & i=1+\alpha \\ & \Delta T_{f}=i K_{f} m \\ &=(1+0.92) \mathbf{x} 1.86 \mathbf{x} \frac{0.5 \mathbf{x} 1000}{74.5 \times 100} \\ & \Delta T_{f}=0.24 \\ & \Delta T_{f}=T_{f}^{0}-T_{f}^{\prime} \\ & T_{f}^{\prime}=-0.24{ }^{0} \mathrm{C} \\ & \\ & \chi_{A}=0.6 \\ & \chi_{B}=0.4 \\ & p_{A}=\chi_{A} p_{A}{ }^{0} \\ &=0.4 \mathbf{x} 105.2 \\ &=42.08 \mathrm{kPa} \\ & p_{B}=\chi_{B} p_{B}{ }^{0} \\ &=0.6 \mathbf{x} 46.8 \\ &=28.08 \mathrm{kPa} \\ & P_{T}=p_{A}+p_{B} \\ &=42.08+28.08 \\ &=70.16 \mathrm{kPa} \end{aligned}$ Composition of A and B in the vapour phase: $\begin{aligned} & p_{A}=y_{A} P_{T} \\ & y_{A}=\frac{42.08}{70.16}=0.599 \\ & p_{B}=y_{B} P_{T} \\ & y_{B}=\frac{28.08}{70.16}=0.400 \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 1 / 2$ $11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
29.	$\begin{align*} & \text { rate }=k[A]^{x}[B]^{y} \\ & 0.05=k[0.1]^{x}[0.1]^{y} \tag{i}\\ & 0.10=k[0.2]^{x}[0.1]^{y} \tag{ii}\\ & 0.05=k[0.1]^{x}[0.2]^{y} \tag{iii}\\ & (\text { ii }) \div(i) \\ & \frac{0.10}{0.05}=(2)^{x} \\ & x=1 \end{align*}$	1/2

	$\begin{aligned} & \text { (iii) } \div(i) \\ & \frac{0.05}{0.05}=(2)^{y} \\ & y=0 \\ & \text { rate }=k[A]^{1}[B]^{0} \end{aligned}$ It is a first order reaction. $\begin{aligned} & k=\frac{\text { rate }}{[A]}=o .5 \mathrm{~s}^{-1} \\ & t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{0.5} \\ & t_{1 / 2}=1.386 \mathrm{~s} \\ & t_{1 / 2}=\frac{0.693}{k} \\ & k_{2}=\frac{0.693}{25} \quad 350 \mathrm{~K} \\ & k_{1}=\frac{0.693}{50} \quad 300 \mathrm{~K} \\ & \frac{k_{2}}{k_{1}}=2 \\ & \log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right] \\ & \log 2=\frac{E_{a}}{2.303 \times 8.314}\left[\frac{350-300}{350 \times 300}\right] \\ & \mathrm{Ea}=12.104 \mathrm{~kJ} / \mathrm{mol} . \end{aligned}$	
30. (a) (b) (c)	$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ $\mathrm{Fe}(\mathrm{OH})_{3}$ is converted into colloidal state by preferential adsorption of Fe^{3+} ions. Proteins	1 1 1
31. (a) (b)	Moist sulphur dioxide behaves as a reducing agent, reduces $\mathrm{MnO}_{4}{ }^{-}$to Mn^{2+}. $\mathrm{X}-\mathrm{X}$ ' bond in interhalogens is weaker than $\mathrm{X}-\mathrm{X}$ bond in halogens except	1 1

\begin{tabular}{|c|c|c|}
\hline (c) \& \begin{tabular}{l}
F-F bond. \\
Due to the ease with which it liberates atoms of nascent oxygen.
\end{tabular} \& 1 \\
\hline (a)
(b)
(c) \& \begin{tabular}{l}
OR \\
It is due to low enthalpy of dissociation of F-F bond and high hydration enthalpy of Fluorine. \\
Nitrogen oxides emitted from the exhaust systems of supersonic jet airplanes combine rapidly with ozone, forming \(\mathrm{NO}_{2}\) and \(\mathrm{O}_{2}\), thus leading to ozone layer depletion. \\
When Neil Bartlett prepared a compound \(O_{2}^{+} P t F_{6}^{-}\), he realised that the first ionisation enthalpy of molecular oxygen and xenon were identical. So he made an effort and mixed \(\mathrm{PtF}_{6}\) and Xe to prepare a similar compound \(X e^{+}\)Pt \(F_{6}^{-}\).
\end{tabular} \& 1
1
1 \\
\hline 32. \& \begin{tabular}{l}
1-Propoxypropane is formed. \\
Mechanism involved: \\
Step 1 :Formation of protonated alcohol \\
Step 3: Deprotonation
\end{tabular} \& 1
\(11 / 2\)

1
1 \\
\hline \& \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
33. \\
(a) \\
(i)
\end{tabular}} \& Experiment \& Ethanal \& Propanone \& \multirow[b]{6}{*}{1} \\
\hline \& 1.Tollens Test: Warm the organic compound with freshly prepared ammonical silver nitrate solution(Tollen's reagent). \& A bright silver mirror is produced \& No silver mirror is formed. \& \\
\hline \& 2. Fehlings Test: Heat the organic compound with Fehling's reagent. \& A reddish bown precipitate is obtained. \& No precipitate is obtained \& \\
\hline \& Any one test \& \& \& \\
\hline \& Experiment \& Pentan-2-one \& Pentan-3-one \& \\
\hline \multirow[t]{2}{*}{(ii)} \& \begin{tabular}{l}
Iodoform Test: \\
The organic compound is heated with iodine in presence of sodium hydroxide solution.
\end{tabular} \& A yellow precipitate is obtained. \& No yellow precipitate is obtained. \& \\
\hline \& \multicolumn{3}{|l|}{Or any other suitable test.} \& 1 \\
\hline \multirow[t]{3}{*}{(b)} \& \multicolumn{3}{|l|}{4- Methoxybenzoic acid < Benzoic acid < 4- Nitrobenzoic acid < 3,4-Dinitrobenzoic acid} \& \\
\hline \& \multicolumn{3}{|l|}{The carbon atom of the carbonyl group of benzaldehyde is less electrophilic than carbon atom of the carbonyl group present in ethanal. The polarity of the carbonyl group is reduced in benzaldehyde due to resonance hence less reactive than ethanal.} \& 1 \\
\hline \& \& \& \[
=\mathrm{CH}-\mathrm{CHO}
\] \& 1 \\
\hline 34
(a)

(b) \& \multicolumn{4}{|l|}{Broad spectrum antibiotics: $\quad 1$} \\

\hline (b) \& \multicolumn{3}{|l|}{| Antibiotics which kill or inhibit a wide range of Gram-positive and Gramnegative bacteria. |
| :--- |
| e.g. Chloramphenicol. |
| any other suitable example. |
| Analgesics: |
| Reduce or abolish pain without causing impairement of consciousness, mental confusion, incoordination or paralysis or some other disturbances of |} \& 1/2 \\

\hline
\end{tabular}

37. (a)	$\begin{array}{lll} \mathrm{A}=\mathrm{FeCr}_{2} \mathrm{O}_{4} & \mathrm{~B}=\mathrm{Na}_{2} \mathrm{CrO}_{4} & \mathrm{C}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \\ \mathrm{D}=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} & & \end{array}$	$\begin{aligned} & (1 / 2 x \\ & 2) \end{aligned}$
(b)		
(i)	$5 \mathrm{f}, 6 \mathrm{~d}$ and 7s levels in actinoids are of comparable energies.	1
(ii)	This is due to poorer shielding by 5 f electrons in actinoids as compared to shielding by 4 f electrons in lanthanoids.	1
(iii)	In actinoids, 5 f electrons are more effectively shielded from the nuclear charge than the 4 f electrons of the corresponding lanthanoids. Since the outer electrons are less firmly held, they are available for bonding in the actinoids.	1
	OR	
(a)		
(i)	MnO_{4}^{2-} ions disproportionate in acidic medium to give Permanganate ions and Manganese(IV) oxide.	1/2
	$3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1/2
(ii)	Lanthanum sulphide if formed.	1/2
	$2 L a+3 S \xrightarrow{\text { heat }}{L a_{2} S_{3}}$ (Deduct overall $1 / 2$ mark if equation not balanced/ statements not written)	1/2
(b)		
(i)	Copper has high enthalpy of atomisation and low enthalpy of hydration. Since the high energy to transform $\mathrm{Cu}(\mathrm{s})$ to $\mathrm{Cu}^{2+}(\mathrm{aq})$ is not balanced by hydration enthalpy, therefore $E^{o}\left(M^{2+} / M\right)$ value for copper is positive(+0.34 V).	1
(ii)	Cr^{2+} is reducing as its configuration changes from d^{4} to d^{3}, the latter having more stable half filled $\mathrm{t}_{2 \mathrm{~g}}$ level. On the other hand, the change from Mn^{3+} to Mn^{2+} results in extra stable d^{5} configuration.	1

(iii)	This is due to the increasing stability of the species of lower oxidation state to which they are reduced.	1

